Exercise 6

In Exercises 5-8, derive the general solution of the given equation by using an appropriate change of variables, as we did in Example 3.

$$
2 \frac{\partial u}{\partial t}+3 \frac{\partial u}{\partial x}=0 .
$$

Solution

Make the change of variables, $\alpha=2 x+3 t$ and $\beta=2 x-3 t$, and use the chain rule to write the derivatives in terms of these new variables.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x}=\frac{\partial u}{\partial \alpha}(2)+\frac{\partial u}{\partial \beta}(2)=2 \frac{\partial u}{\partial \alpha}+2 \frac{\partial u}{\partial \beta} \\
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}=\frac{\partial u}{\partial \alpha}(3)+\frac{\partial u}{\partial \beta}(-3)=3 \frac{\partial u}{\partial \alpha}-3 \frac{\partial u}{\partial \beta}
\end{aligned}
$$

The PDE then becomes

$$
\begin{aligned}
0 & =2 \frac{\partial u}{\partial t}+3 \frac{\partial u}{\partial x} \\
& =2\left(3 \frac{\partial u}{\partial \alpha}-3 \frac{\partial u}{\partial \beta}\right)+3\left(2 \frac{\partial u}{\partial \alpha}+2 \frac{\partial u}{\partial \beta}\right) \\
& =12 \frac{\partial u}{\partial \alpha} .
\end{aligned}
$$

Divide both sides by 12 .

$$
\frac{\partial u}{\partial \alpha}=0
$$

Integrate both sides partially with respect to α to get u.

$$
u(\alpha, \beta)=f(\beta)
$$

Here f is an arbitrary function. Now that the general solution to the PDE is known, change back to the original variables.

$$
u(x, t)=f(2 x-3 t)
$$

